Antibodies to protein tyrosine phosphatase receptor type O (PTPro) increase glomerular albumin permeability (P(alb)).
نویسندگان
چکیده
Glomerular capillary filtration barrier characteristics are determined in part by the slit-pore junctions of glomerular podocytes. Protein tyrosine phosphatase receptor-O (PTPro) is a transmembrane protein expressed on the apical surface of podocyte foot processes. Tyrosine phosphorylation of podocyte proteins including nephrin may control the filtration barrier. To determine whether PTPro activity is required to maintain glomerular macromolecular permeability, albumin permeability (P(alb)) was studied after incubation of glomeruli from normal animals with a series of monoclonal (mAb) and polyclonal antibodies. Reagents included mAbs to rabbit and rat PTPro and polyclonal rabbit immune IgG to rat PTPro. mAb 4C3, specific to the amino acid core of PTPro, decreased its phosphatase activity and increased P(alb) of rabbit glomeruli in a time- and concentration-dependent manner. In contrast, mAb P8E7 did not diminish phosphatase activity and did not alter P(alb). Preincubation of 4C3 with PTPro extracellular domain fusion protein blocked glomerular binding and abolished permeability activity. In parallel experiments, P(alb) of rat glomeruli was increased by two mAbs (1B4 and 1D1) or by polyclonal anti-rat PTPro. We conclude that PTPro interaction with specific antibodies acutely increases P(alb). The identity of the normal ligand for PTPro and of its substrate, as well as the mechanism by which phosphatase activity of this receptor affects the filtration barrier, remain to be determined.
منابع مشابه
Protein tyrosine phosphatase receptor type O inhibits trigeminal axon growth and branching by repressing TrkB and Ret signaling.
Axonal branches of the trigeminal ganglion (TG) display characteristic growth and arborization patterns during development. Subsets of TG neurons express different receptors for growth factors, but these are unlikely to explain the unique patterns of axonal arborizations. Intrinsic modulators may restrict or enhance cellular responses to specific ligands and thereby contribute to the developmen...
متن کاملThe tyrosine phosphatase PTPRO sensitizes colon cancer cells to anti-EGFR therapy through activation of SRC-mediated EGFR signaling
Inappropriate activation of epidermal growth factor receptor (EGFR) plays a causal role in many cancers including colon cancer. The activation of EGFR by phosphorylation is balanced by receptor kinase and protein tyrosine phosphatase activities. However, the mechanisms of negative EGFR regulation by tyrosine phosphatases remain largely unexplored. Our previous results indicate that protein tyro...
متن کاملProtein tyrosine phosphatase receptor-type O (PTPRO) exhibits characteristics of a candidate tumor suppressor in human lung cancer.
Previous study in our laboratory demonstrated suppression of the gene for protein tyrosine phosphatase receptor-type O (PTPRO) in primary and established rat hepatomas. The present study showed methylation-mediated silencing of this gene in primary human lung tumors and in several human lung cancer cell lines, one of the characteristics of many tumor-suppressor genes. The reduced expression of ...
متن کاملA novel substrate of receptor tyrosine phosphatase PTPRO is required for nerve growth factor-induced process outgrowth.
The receptor protein tyrosine phosphatase PTPRO may be involved in axon guidance both as a ligand and as a neuronal receptor. We have begun to characterize signaling by PTPRO as a receptor by screening for proteins interacting with the intracellular domain of PTPRO. In a yeast-two hybrid screen, we identified a novel class of protein, which we named neuronal pentraxin with chromo domain (NPCD),...
متن کاملSuperoxide dismutase mimetic preserves the glomerular capillary permeability barrier to protein.
Overproduction of superoxide (O2*) occurs in glomerular disease and may overwhelm the capacity of superoxide dismutase (SOD), thereby intensifying oxidant injury by O2* and related radical species that disrupt the glomerular capillary permeability barrier to protein. We examined the efficacy of the SOD mimetic tempol in preserving glomerular permeability to protein using 1) a rat model of glome...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 297 1 شماره
صفحات -
تاریخ انتشار 2009